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Abstract: The current status in rational drug design using homology-based models is discussed, with focus on
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INTRODUCTION

Rational drug design is an important concept in
pharmaceutical research. The goal is to identify a key drug
target based on a thorough understanding of regulatory
networks and metabolic pathways, and to design a highly
specific drug based on the known three-dimensional (3D)
structure of that target. The flood of data from large-scale
genome oriented projects is bringing this concept closer to
reality. The detailed mapping of genome sequences,
regulatory networks and metabolic pathways combined with
single nucleotide polymorphism (SNP) data, biological
samples or health records makes it easier to identify optimal
drug targets. Access to high-quality 3D structures of these
targets is a good starting point for rational design of novel
drugs.

There are several examples of rational drug design using
targets with known 3D structure, including the HIV protease
inhibitors amprenavir (Agenerase) and nelfinavir (Viracept)
[1-3] and the influenza virus inhibitor zanaminivir (Relenza)
[4]. Structure-based drug design has also been applied for
example in the design of inhibitors of protein kinases [5]
such as Abl kinase [6], CDKs [7], EGFR kinase [8], Lck [9]
and Src [10].

X-ray crystallography is the main method for structure
determination of proteins. This can be a time-consuming
process, and it will succeed only if it is possible to find
suitable conditions for growing crystals. This can therefore
easily become a bottleneck in drug design projects.
However, structural domains of proteins can be classified
into classes of similar folds, and the number of protein folds
actually used by nature seems to be limited [11].
Experimental structure data have been generated for a large
fraction of these possible folds, and ongoing structure
determination efforts focus on making this mapping as
complete as possible. This makes homology-based
modelling of protein structures a realistic and relevant
alternative to experimental structure determination.
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Comparative modelling is often used as a neutral
alternative to homology modelling, which implies an
evolutionary relationship between target and templates.
Homology modelling has been used successfully in several
drug design projects. Enyedy et al. [12] have utilised a
homology model of Bcl-2 to identify a novel class of
inhibitors by structure-based computer screening. Furet et al.
[13] successfully applied homology-based modelling for
rational design of inhibitors of Cyclin-dependent kinase 1
(CDK1). A modelled structure of an antagonist-bound
retinoic acid receptor based on the structure of estrogen
receptor has been applied for virtual ligand screening,
resulting in the discovery of three novel ligand candidates
[14], and homology modelling of Falcipain-2 provided
information that led to the discovery of new drug leads
against malaria [15].

It is a matter of discussion whether homology models are
accurate enough to be utilised in ligand screening and
design. It is at least important to use methods that are robust
against small structural errors. Recently, Schafferhans and
Klebe [16] published a method for computational docking of
ligands into protein binding sites that is especially suited for
protein structures derived by homology modelling. This
method incorporates ligand information into the protein
structure modelling procedure. Another drug design method,
PASSA, has also been developed specifically for use on
homology models. This method uses several alternative
homology models for the same protein together with
structures of other, related proteins to single out unique
features of the target protein [17]. However, such approaches
do not decrease the importance of high quality models of
potential targets.

HOMOLOGY MODELLING

Homology modelling is based on the observation that
the 3D structure of homologous proteins is more conserved
than sequence [18]. Chothia and Lesk [19] investigated the
relation between sequence conservation and structural
similarity for 32 pairs of homologous proteins, and
concluded that a protein structure can provide a close general
model for other proteins if the sequence similarity is greater
than 50%. When the sequence identity drops to 20%, there
will be large structural differences. However, the active sites
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Fig. (1). Key steps in the homology modelling and drug design pathway.

The modelling and design process normally starts with a suitable drug target, the 3D structure of the target is predicted through
homology modelling and the model is used for rational drug design (a). However, it is also possible to start with general high-
throughput modelling using all potential targets, followed by target selection based on these models (b). In both sections (homology
modelling and drug design) there are feedback loops, where e.g. model quality may be used to improve alignment (c) or experimental
data may have influence on the drug design strategy and lead optimisation (d).

can have very similar geometries, even for distantly related
proteins [20,21].

The methodology itself can be described in four steps
(illustrated in Fig. (1)): Identifying a suitable template,
making an optimal target-template alignment, building the
model and validating the model. Protein structure prediction
and homology modelling has recently been reviewed by
Schonbrun et al. [22] and Al-Lazikani et al. [23].

Template Identification

The first step is matching the protein sequence of interest
(the target) to experimentally determined structures, in order
to find at least one protein (the template) for which we can
assume that it has the same 3D structure as the target. This
is normally based on sequence similarity. Heuristic search
methods such as BLAST [24] and FASTA [25] are often
used in the initial template-finding step, because these
methods are fast and well tested. In difficult cases more
sensitive fold recognition methods, which utilise techniques
such as Hidden Markov Methods, Neural Networks, iterated
searches (e.g. PSI-BLAST [26]), and evolutionary
information can be used to scan a structural database for
suitable templates [27]. In particular when no close
homologues can be found, the increased sensitivity from
these methods may allow more potential templates to be
identified. This may improve the general reliability of the
model, and it may help in identifying structurally conserved
regions. For the same reason it is generally advantageous to

use several fold recognition methods in parallel, as
alternative algorithms may retrieve slightly different data
sets and alignments [28].

Alignment

After identification of the best templates for modelling,
an optimal alignment must be made. This seems to be the
most crucial step in homology modelling [22,29]. Here
“optimal” means that corresponding sequence positions in
target and template are identified, so that the predicted
structure of the target, based on the template, is as similar as
possible to an experimental structure of the same target.
Identification of corresponding sequence positions in terms
of evolution will at least give a close approximation to an
optimal alignment. It is important to realise that the
sequence alignment of target with respect to a template
identified by a search method or fold recognition method
may be sub-optimal with respect to modelling. Different
score matrices are needed in order to get optimal alignments
for homology modelling as compared to fold recognition
[30], possibly because fold recognition needs to focus on
conserved regions whereas homology modelling needs to
take all regions into account. Hence, alignments generated
from fold recognition methods often require refinement in
order to be utilised for modelling.

The Smith-Waterman algorithm uses dynamic
programming to find an optimal alignment between two
sequences, given a scoring matrix and a gap model [31,32].
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Table 1. Some Commonly Used Homology Modelling Programs

Method Typea Ref. Url

SWISS-MODEL RBS [52] http://www.expasy.org/swissmod/SWISS-MODEL.html

WHATIF RBS [53] http://www.cmbi.kun.nl/whatif/

COMPOSER RBS [54-58] http://www.tripos.com/

CONGEN RBS [59] http://www.congenomics.com/

InsightII/Homology RBS [60] http://www.accelrys.com/

TURBO-FRODO RBS http://afmb.cnrs-mrs.fr/TURBO_FRODO/

JACKAL RBS http://trantor.bioc.columbia.edu/~xiang/jackal

ICM-Homology RBS [61] http://www.molsoft.com/

Look/GeneMine SM [62] http://www.bioinformatics.ucla.edu/genemine/

MODELLER SR [56] http://www.salilab.org/modeller/modeller.html

InsightII/Modeler SR [56] http://www.accelrys.com/
a RBS – Rigid body superposition, SM – Segment matching, SR – Spatial restraints

However, the scoring matrix and gap model represents a
simplified model of evolution, and a mathematically
optimal solution may still be wrong from an evolutionary
perspective. The use of alignments based on multiple
sequences is recommended, as this will highlight
evolutionary relationships, and increase the probability that
corresponding sequence positions are correctly aligned.
Moreover, evolutionary information incorporated into
sequence profiles greatly increases the alignment accuracy,
bringing the alignment closer to the ‘true’ structural
alignment [33]. ClustalX [34], Poa [35], Dialign [36,37] and
T-Coffee [38] are important multiple alignment tools. It has
been reported that for cases of low sequence identity, Dialign
produces the most accurate alignments, whereas T-Coffee is
more robust in cases of higher sequence identities [39].
Improved performance can be achieved by combining several
alignment strategies [40,41]. Other interesting methods
include machine learning [42], fast Fourier transform [43]
and improved score matrices built from structural
superposition data [44]. New scoring functions have also
been developed to give a quantitative measure of alignment
accuracy [45].

Using structurally aligned templates as a starting point
for the multiple sequence alignment will improve the
alignment quality if sequence similarity is low [23,40,46].
Alignment programs such as DALI [47], STRUCTAL [48]
and LOCK [49] are examples of structural alignment
methods for aligning multiple templates.

Regardless of which program is used, the quality of the
alignment should always be verified. However, this is
closely related to verification of the homology model itself,
and will therefore be discussed there.

Model Building

Model building consists of three main steps. The
homology is important mainly when building the core of the
protein. Loop modelling is basically de novo model
building, whereas side chain (re)modelling mainly is an

optimisation step. Reliable identification of structurally
conserved core regions versus variable loop regions is an
important aspect of this process [50].

There are currently three important approaches for
building the core region from alignments. Rigid body
superposition constructs the model from a few core sections
defined by the average of Cα  atoms in the conserved
regions. Distance geometry uses spatial restraints obtained
from the alignment. Segment matching uses a database of
short segments of protein structure, with energy or geometry
rules, or some combination. It has been shown that when
used optimally, accuracies are similar for most modelling
methods [51]. Some commonly used programs for
homology modelling are listed in Table 1.

SwissModel [52,63] is a popular implementation of the
rigid body approach. ProModII [64] generates a model
framework based on the topological arrangement of
corresponding atoms to the given templates. The backbone
is rebuilt based on the positions of Cα  atoms, using a
library of backbone elements derived from high quality X-
ray structures. Incomplete loops and incomplete or missing
side chains are rebuilt before the models are energy
minimised with molecular mechanics (MM).

Homology modelling in MODELLER [56] is based on
satisfaction of spatial restraints. Distance and dihedral angle
restraints on the target structure are generated, based on the
alignment to the template structure. Corresponding distances
and angles between aligned residues in the template and the
target structures are assumed to be similar. Restraints on
bond lengths, bond angles, dihedral angles and nonbonded
atom-atom contacts are also derived from statistical analysis
of the relationships between Cα  atoms, solvent
accessibilities and side-chain torsion angles in known
protein structures. The restraints are expressed as probability
density functions (pdfs). These pdfs are combined to give a
molecular function, which is optimised using a combination
of energy minimisation with molecular dynamics and
simulated annealing.
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The LOOK software package [62] uses Segment Match
Modeling (SegMod) to generate homology models by
fragment based assembly [65]. SegMod uses a powerful
fragment-matching algorithm to find the appropriate
structural segments derived from known 3D structures. It
utilises both backbone and side chain information from the
fragments to obtain a complete model. After building 10
individual models, the averaged model is then minimised
using molecular mechanics. SegMod handles insertions and
deletions during model building by searching for compatible
fragments.

Separate steps are often used for predicting loops (loop
libraries or ab initio loop building) [66-69], and modelling
side chains [68,70-74]. These methods can be used in
combination with any of the core modelling techniques.

Although functionally important regions usually are well
conserved, flexible loop regions may often contribute
significantly in defining specificity. Accurate loop
modelling may therefore be important for the usefulness of
the homology model. However, existing methods are
generally not reliable for loops longer than 5 residues [75].
Loops are often too short to provide sufficient information
about their local fold, and segments of up to 9 residues
sometimes have entirely unrelated conformations in different
proteins [76,77]. Identification of optimal anchor groups
seems to be an important step in loop prediction [78,79]. Ab
initio loop prediction has recently been discussed by
Galaktionov et al. [69].

After the initial model building, the model can be
optimised with molecular mechanics software using either
energy minimisation or molecular dynamics methods, or a
combination. However, optimisation methods will in
general not bring models closer to the true structure [22]. In
fact, with extensive refinement homology models actually
tend to get worse [80]. Recent data from Flohil et al.
indicate that some improvement may be gained if long time
scale simulation with explicit inclusion of water molecules
is used [81]. However, since the roles of optimisation
procedures in improving structural quality are still debated
[51,68,70], they should be used with caution. Particular care
has to be taken when domains, rather than full structures, are
modelled. In domain modelling, the positions of any atoms
forming an interface to a missing domain should be fixed
during energy minimisation. Free movement in these
regions can lead to side chain conformations that are
preferable energetically, but not possible in the real protein
structure because of interactions with residues in the missing
domain.

It is still relatively unclear which approach generates the
best model. Since 1994 several modelling groups have
participated in a bi-annual evaluation project, the Critical
Assessment of Techniques for Protein Structure Prediction
(CASP) [82]. The groups model proteins that are in the
process of being solved experimentally, but not yet have
been released for publication. The submitted models are later
compared to the then released structures to determine which
modelling methods have been most successful. There is also
a web-server, EVA-CM (http://www.pdg.cnb.uam.es/
eva/cm/) which is designed to evaluate protein structure
prediction and modelling servers in ’real time’ [83,84]. This
server evaluates the ’black box’ modelling programs. These

programs often limit the number of templates used and
impose limitations on manual intervention.

Validation of Models

The accuracy of a model depends upon the sequence
similarity it shares with the template. Models with >50%
sequence identity to templates are normally of high quality,
with ~1 Å root mean square (RMS) error for main chain
atoms (equal to medium-resolution NMR or low resolution
X-ray structures). Models that have 30 – 50% sequence
identity are normally of medium accuracy with an RMS of
~1.5 Å [51,76,85]. Typical errors include problems with
side-chain packing, core distortion, loops, and
misalignment.

Several validation checks are used for assessing model
quality. The most common checks pertain to geometric and
stereochemical measurements: covalent geometry (bond
lengths and angles), planarity, chirality, phi/psi preferences,
chi angles, non-bonded contact distances, unsatisfied
donors/acceptors etc [86,87]. Ramachandran plots can
provide an overall view of phi/psi values and is a good
indicator of the global quality of the model [88]. Quality
checks such as these are present in standard crystallographic
and NMR software packages as well as in software designed
for molecular modelling (e.g. WHATIF and PROCHECK)
[53,89]. However, this analysis only indicates the presence
of unusual conformations in the structure. Even an incorrect
alignment may end up with very reasonable local geometry.
Hence, additional tests are needed, in particular for models
based on templates with low sequence similarity, where the
possibility for misalignment is significant. This is a quite
general problem, an interesting example of a misalignment
error was recently identified in an experimental 3D structure
[90].

Many of these tests are basically fold recognition
methods scoring the compatibility between the target
sequence and the predicted 3D structure. Sippl et al. uses an
inverse Boltzmann principle to calculate a mean force
potential by ’threading’ the target sequence onto structures
[91], measuring how well the primary sequence fits the
given three-dimensional structure. A related approach tests
model correctness by way of a 3-D profile [92]. The 3-D
profile of the structure describes the structural environment
of each residue. This can be used to score compatibility of
any amino acid sequence with that structure. Yet another
quality assessment algorithm takes into consideration
geometrical parameters of a given structure and then
calculates the local, buried and contact energy via statistical
potentials of mean force [93-96]. This method has been used
in homology modelling to evaluate alternative protein
models based on different alignments and as a detector of
problematic regions within the protein structure. Another
validation measure, designed directly from the results of
CASP3, seeks to find the largest subset of Cα  atoms of the
model that can be superpositioned well with the template
structures it was modelled from. The normalised score
reflects a rough quality measure of the model [97].

The validation checks have to be viewed in light of the
validation of the template structure itself. Crystallographic
structures are also prone to error, and whatever discrepancies
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Fig. (2). MCSS.

MCSS mapping of a protein cavity. A large number of different small molecules are placed inside the binding cavity of the protein
(left frame). A special energy minimisation procedure is run (see main text). Once the energy minimum has been found, the positions
and orientations of low energy molecules may be inspected (right frame).

introduced through the chemical structure determination will
most likely also arise in any model based on that structure.
The best approach is to gather as much information from as
many sources as possible, for both model and templates.

DRUG DESIGN

Given a suitable model of the 3D structure of a potential
target, the drug design step tries to find the optimal
compound for moderating the normal function of the target
in a selective and normally reversible way. In addition to
this, several physical criteria have to be met, related to
production, uptake, degradation etc. Here we will focus on
the actual ligand design, in particular on methods that may
improve selectivity. In order to design a ligand for a given
target possible interaction sites for ligands have to be
identified and the properties of these sites have to be
mapped. However, considering only the target protein may
be a mistake. Many drugs have recently been withdrawn
from late stage testing due to off target effects [98]. Hence,
to achieve selectivity and avoid side effects, knowledge of
related binding sites is also important. Homology modelling
makes this practical, as dozens or hundreds of protein
structures can be obtained. If such massive amounts of
structural data are to be useful, data analytical methods are
needed that aid the interpretation of structural data.

Mapping of Binding Sites

Numerous methods for mapping protein binding sites
exist, the majority of which utilise calculations of
interaction energies between the protein and small, molecular
probes. Binding site analysis is a prerequisite for effective
database searches, docking, and de novo ligand design. The
field of binding site analysis has recently been reviewed
[99]. Therefore, this review will focus on mapping strategies
that enable comparison of numerous structures for the
purpose of understanding selectivity, in particular Multiple
Copies Simultaneous Search (MCSS), GRID and Protein
Alpha Shape Similarity Analysis (PASSA).

Multiple copies simultaneous search is a method for
finding favourable interaction sites in a protein cavity [100].
The idea behind MCSS is to place a large number of copies

of one or more probe molecules into the active site of the
target. These probes are placed randomly around the active
site atoms and are assumed not to interact with each other
(Fig. (2), left). Next, a special energy minimisation protocol
is used to refine the initial placement. The receptor atoms
may be kept fixed, or be subject to the average forces of the
probes [101]. Each probe is subject to the full force of the
receptor but not forces from the other probes. Once stable
receptor and fragment geometries have been found, fragments
with high energies are deleted. The resulting low energy
fragments and how they interact with the receptor can then
be analysed (Fig. (2), right). The probe molecules are free to
move and will have migrated towards regions of favourable
interaction with the receptor. This identifies regions of
strong interactions that may be used by a ligand. It also
gives information on favourable orientation of functional
groups. This is useful for de novo ligand design as the low
energy fragments can be used as starting points. However, a
more systematic and complete mapping of the binding site
may be necessary, since this random search strategy may not
find all relevant interactions.

One of the most common methods for mapping ligand
binding sites in proteins is GRID [102], which uses a
regular grid spanning the binding site. At each grid point the
interaction energy between the protein and a probe group
placed on the grid point is computed using a molecular
mechanics energy function. Parameters for probes
representing various functional groups have been developed
[103,104]. The results can be visualised as contour plots of
the interaction energies for different probes, and highly
detailed potential maps of binding sites may be produced.
The low energy contours indicate where functional groups of
a ligand are likely to be placed. GRID has been used to
suggest functionality for both antibacterial [105,106] and
antiviral drugs [107,108]. Both GRID and MCSS have been
compared to experimental binding of small molecules by
crystallising the same protein in various solvents [109]. It
was found that both methods identified approximately the
same interaction site, but most results were not reproduced
experimentally. In some cases MCSS predicted the correct
orientation of the probe, but the predicted orientation of
large hydrophobic probes was often wrong. The major reason
for the discrepancies between experimental and
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Fig. (3). PASSA.

Protein structures are aligned to maximise the overlap in the active site. A regular grid is placed surrounding the active sites and the
alpha shape density of each protein is computed at each grid point. The density data form the matrix X . The user also specifies a
number of classes, and assigns each protein to a class. The alpha shape densities and the class data are analysed by DPLSR and a
regression model is produced. Interpretation of the model consists of two parts: Regression coefficients and scores. Mapping the
regression coefficients back on a protein structure may indicate which regions may contribute to selectivity. Regions may be colour
coded by their lipophilic or hydrophilic nature. The scores provide an alternative picture of the model. In the scores space, every
protein is represented by one point. Visualising the distribution of proteins in the scores space is useful for discovering clusters,
highly deviant structures and structural diversity in a set of proteins.

computational results is believed to be neglect of solvent
and entropy effects in the computational models.

Compared to MCSS, the GRID method has the
disadvantage that the fragments are not free to move away
from their grid point to a more optimal location. However,
the fixed grid has a major advantage with respect to
comparability. Many related proteins can be superpositioned
and the same grid used for all of them. Interesting
differences between related binding sites can be identified by
comparing energy maps. Thus, using GRID on multiple
proteins can aid the development of ligands selective for a

particular protein target. The data from the GRID
computations can be analysed by Principal Component
Analysis (PCA) to find the most important structural
differences to take into consideration for the design of a
selective inhibitor. The data analysis tools used to analyse
GRID results have been refined by changing the weighting
of data from different probes. This has been applied to the
design of selective inhibitors of both serine proteases [110]
and metalloproteinases [111]. Additional work using
homology models has been done on human cytochromes
[112].
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The use of homology models as the basis for GRID
calculations requires some special considerations,
specifically if multiple models are to be used in the design
of selective ligands. Computing the interaction energy
requires precisely defined atomic charges for all atoms,
protonation states, and correct placement of hydrogen atoms.
The very steep gradients of most force fields close to nuclei
may cause instabilities in the PCA models and inflate the
effects of small errors in the homology models or the
superpositioning.

Protein Alpha Shape Similarity Analysis (PASSA) is an
alternative to GRID, developed particularly for use with
homology models in the design of selective ligands. This
method uses geometrical objects known as alpha spheres to
construct a representation of the active site. An alpha sphere
is a sphere that contacts four atoms on its surface and has no
atoms contained internally. Small alpha spheres correspond
to densely packed regions in the protein, while very large
spheres are found on the protein surface. In the typical
binding pocket however, medium sized spheres are found.
Clusters of medium sized spheres will thus correspond to
the binding cavities of the protein. Alpha spheres have
proven useful for identifying the binding pockets in a
number of proteins, and the centres of alpha spheres have
been found to correspond well with the placement of atoms
in bound ligands [113]. Alpha shapes are determined
geometrically, using only the positions and radii of the
heavy atoms. This eliminates the need for placing hydrogens
and determining protonation states and partial charges. The
alpha spheres are classified as hydrophobic or hydrophilic
depending on the protein atoms they contact.

PASSA converts the discreet information contained in
the placement of alpha sphere centres and protein atoms to a
continuous field using a gaussian density estimate.
”Dummy” atoms placed at each alpha sphere centre are
assigned weights for either the hydrophobic or the
hydrophilic field, according to the alpha sphere class. The
use of gaussian functions with a very simple partitioning
according to the hydrophilic or hydrophobic nature of the
alpha spheres reduces some of the problems associated with
traditional force field models. Gaussian functions have
neither steep derivatives nor singularities. The less detailed
representation may also be more robust against the errors
typically present in homology models. Analysis of data
from gaussian fields typically produce contour plots that are
less fragmented and easier to interpret than those produced
using force field models [114].

PASSA has been used to suggest properties of a selective
inhibitor of Tyrosine kinase 2 (TYK2) and also to
understand the basis of the selectivity of STI571, a selective
Abl kinase inhibitor [17]. In this approach, Discriminant
Partial Least Squares Regression (DPLSR), rather than
PCA, is used to analyse the field data (Fig. (3)). DPLSR
enables the user to guide the analysis towards features
relevant for selectivity towards a specific protein or group of
proteins. This is done by dividing the protein structures
included in the analysis into classes, typically a ‘target’
class, containing the structures one wishes to develop a
ligand for, and an ‘other’ class. The ‘other’ class contains
proteins related to the target, but for which a low affinity is
desired. Any class scheme may be used e.g. in exploratory

work looking for a suitable drug design target. In some
cases, a single protein structure may even belong to more
than one class. When analysing homology models in this
manner, it is advantageous to use more than one model of
each protein, particularly if several templates of comparable
sequence identity are available. If several independent
structures exist in both the ‘target’ and ‘other’ classes, cross
validation of the DPLSR model can be used to assess the
stability of the model parameters. Thus, the influence of
errors in the homology modelling may be gauged. DPLSR
works by extracting a low dimensional subspace from the
PASSA data that can explain the class structure. Typically
relatively few dimensions are needed to separate the classes.
This enables visualisation of the relationship between the
structure models and easy discovery of clusters or deviant
structures. DPLSR models can represent the differences
between the protein(s) of interest and all other proteins in the
study as a single vector of beta coefficients. The beta
coefficients can be visualised as contours in the original 3D
space of the protein structures. Spatial regions that may form
the basis of selectivity may thus be identified. When
designing a TYK2 inhibitor, PASSA was used in
combination with MCSS. The plots of the regression
coefficients from PASSA were used to guide the selection of
MCSS fragments towards those fragments that may
contribute to selectivity as well as affinity. This use of
combined knowledge of affinity and selectivity is a good
starting point for both database searches and de novo ligand
design, simplifying the task of designing a selective
inhibitor.

Database Screening

Once possible interaction sites for a selective inhibitor
have been identified, databases of already existing drugs can
be searched in order to find a drug molecule that fits the
receptor binding site [115]. A number of such databases
exist, such as The Cambridge Structural Database [116], the
database of The National Cancer Institute
(http://cactus.nci.nih.gov/), the Available Chemicals
Directory (MDL Information Systems) and PDBsum (which
includes a database of ligands from the RCSB Protein
Database) (http://www.biochem.ucl.ac.uk/bsm/pdbsum/).
The hits from the database searching can then be evaluated
further by molecular docking. Available docking programs
include AutoDock [117], DOCK [118], FlexX [119], GOLD
[120], LUDI [121] and MOE-Dock (Chemical Computing
Group Inc). A version of FlexX suited for combinatorial
library docking, FlexXc, has also been developed [122].
Recently, new docking methods especially suited for use
with homology modelled protein structures have been
developed. Schafferhans and Klebe [16] use gaussian
functions to represent the physico-chemical properties of the
receptor and the ligand, and optimise the overlap between
the functional description of the receptor binding site and the
ligand. Another docking method that utilises gaussian
functions is the method developed by McGann et al. [123],
that acts as a filter to reduce the search space for other
docking methods. This method only accounts for shape, and
minimises steric clashes between the receptor and ligand
atoms. The method developed by Wojciechowski and
Skolnick [124] uses a discretisation of the structural models
together with an averaging of the structural details and a
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Fig. (4). Three main categories of de novo ligand design methods.

Black spheres indicate hydrophobic areas of the protein, while white spheres indicate hydrophilic areas. In the linking approach (a),
molecular fragments placed close to important residues of the protein are connected to obtain a ligand. The growing approach (b)
starts from one fragment and connects fragments sequentially to it. Most of the random connection methods (c) start from an initial
“pool” of fragments and construct ligands by making and breaking connections between the fragments.

smoothing of the potential energy surface to compensate for
structural errors. Both steric and chemical complementarity
between the ligand and the receptor is sought using a grid-
based search. A complete cover of existing docking and
virtual screening methods is outside the scope of this
review, but the topic has recently been reviewed e.g. by
Taylor et al. [125], Lyne [126] and Bajorath [127].

To limit the computational time, docking simulations
have traditionally been carried out with a fixed protein
structure. When using protein structure models built by
homology modelling, it is especially important to allow for
protein flexibility, since this can reduce the impact of small
structural errors. Homology models are built using X-ray
structures of other proteins as templates. These are often co-
crystallised with a ligand, which induces ligand-specific
conformational changes in the protein. Using a rigid protein
structure might thus prevent us from identifying optimal
binding modes for alternative ligands. Some methods, such
as the method developed by Leach [128] and the “Mining
Minima Optimizer” method developed by Kairys and Gilson
[129] use side-chain flexibility. Anderson et al. [130]
developed an algorithm for identifying regions where
conformational adaptation to a ligand is likely to occur.
During the docking simulations the side-chains of these
residues are allowed to move.

Recently, some new methods have been developed, that
take protein backbone flexibility into account. The majority
of these methods utilise multiple protein structure models in
the calculations. Österberg et al. [131] incorporated protein
flexibility and structural water heterogeneity into the

docking simulations using an ensemble of protein structures.
In the “Relaxed Complex Method”, developed by Lin et al.
[132,133] a long molecular dynamics (MD) simulation of
the unliganded receptor is carried out, followed by a rapid
docking of candidate ligands to a large ensemble of the
receptor’s MD conformations. The FlexE approach [134] is
based on a united protein description generated from an
ensemble of protein structures. For varying parts of the
protein, discrete alternative conformations are explicitly
taken into account, which can be combinatorially joined to
create new protein structures. Broughton combined the use
of statistical analysis of conformational samples from short-
run protein molecular dynamics with grid-based docking
[135].

De Novo Ligand Design

If one fails to find a drug molecule having the required
interacting groups by database searching, the alternative may
be to construct a ligand having active groups placed in such
a way that interaction with the protein at the identified
interaction sites is possible. This ligand construction process
is called de novo ligand design. A large number of de novo
design programs are available. These can be divided into
three main categories: those that connect molecular
fragments placed at the interaction sites to obtain a ligand
(linking), those that start from one fragment and connect
fragments sequentially to it (growing) and random
connection methods. The last category includes the genetic
algorithm methods. Most of the random connection methods
start from an initial “pool” of fragments and construct
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Table 2. Some De Novo Ligand Design Programs

Method Typeb Ref Url

BUILDER L [137] http://thalassa.ca.sandia.gov/~dcroe/

CAVEAT L [138] http://www.cchem.berkeley.edu/~pabgrp/Data/caveat.html

HOOK L [139] http://www.accelrys.com/quanta/mcss_hook.html

LUDI L [121] http://www.accelrys.com/insight/ludi.html

PRO_SELECT L [140] http://www.protherics.com/wtech_camdt.html

SKELGEN L [141] http://www.denovopharma.com/

SmoG G [142] http://www-shakh.harvard.edu/~smog/

CombiSMoG G [143] http://www.concurrentpharma.com/

SPLICE L [144] http://www.tripos.com/

SPROUT G [145] http://www.simbiosys.ca/sprout/

LigBuilder L+G [146] http://mdl.ipc.pku.edu.cn/drug_design/work/ligbuilder.html

LeapFrog G Tripos http://www.tripos.com/

DycoBlock L [147] yyshi@iris.bio.ustc.edu.cn

ADAPT R [148] http://mako.cgl.ucsf.edu/~spegg/

LEA R [149] douguetl@caramail.com

b L – linking approach, G – growing approach, R – random connection approach

ligands by making and breaking connections between the
fragments. Molecular fragments placed at possible
interaction sites in the receptor binding pocket found by
methods such as PASSA can be used as starting points for
all three approaches. These approaches are illustrated in Fig.
(4), and Table 2 lists some de novo ligand design programs
and the approaches they use. A more complete listing of
available de novo ligand design methods can be found in
Schneider et al. [136].

There are a number of limitations to existing de novo
ligand design methods. Most of these methods do not take
factors such as synthetic accessibility, bioavailability and
metabolic properties into account. Many of the ligand
suggestions have large and complex structures. Recently,
some programs have been developed that attempt to take
such factors into account. An example is LigBuilder [146],
which uses a filter to make sure that the structures produced
have reasonable ADMET (Absorption, Distribution,
Metabolism, Excretion and Toxicity) properties. As for
molecular docking, most de novo ligand design methods use
rigid protein structure models. Recently, some methods have
been developed that attempt to take protein flexibility into
account. A new version of DycoBlock, F-DycoBlock [150]
uses multiple-copy stochastic molecular dynamics to account
for fluctuations in the protein structure. Carlson et al.
developed the “Dynamic Pharmacophore Method” [151], that
determines pharmacophore models for a large number of MD
snapshots. Protein flexibility in drug design has been
reviewed by Carlson and McCammon [152,153] and Wong
and McCammon [154].

Most de novo ligand design methods use simplified
scoring functions for the ligand-receptor system to estimate

binding affinity, mainly in order to speed up the
calculations. Solvation effects are typically omitted. Energy-
based scoring functions use molecular mechanics force fields
to estimate the binding energy, while rule-based scoring
functions use rules derived from analysis of structural
databases. Energy-based scoring functions are slow, and
sensitive to errors in the protein structure, atomic charges
and protonation states. In the same way as for GRID, the
force field scoring methods are often sensitive to small errors
in the atomic positions. Rule-based scoring functions are
often very simple, and are highly dependent on the amount
of structural data used to derive the rules. In spite of these
limitations, de novo ligand design methods have contributed
to the development of several important drug leads [155],
and have proved very useful when combined with some
expert knowledge in medicinal chemistry. In recent years
several cases of successful application of de novo ligand
design methods have been reported, as described in the
introduction. An important example is the discovery of STI-
571, which is a selective inhibitor of Abl kinase, and is
currently being used as a therapeutic agent against chronic
myelogenous leukaemia [6,156]. Other examples include the
development of an antifungal agent [157] using LUDI and
the design of aspartyl protease inhibitors using a growth
type algorithm. The aspartyl protease inhibitors were verified
experimentally [158].

CONCLUSIONS

Homology modelling has significant potential as a tool
in rational drug design, in particular in high throughput in
silico screening or simulation approaches. However,
although the methods already are very useful, as
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demonstrated in several drug design projects, significant
improvement is needed before the tools are robust and
general enough for large scale use. All aspects discussed in
this review may need some improvement, but a few selected
areas may benefit from some extra attention. The quality of
the final structure depends mainly on the quality of the
target-template alignment. Any improvement in alignment
protocols will improve the final model. However, there will
always be structural differences between target and templates,
and these differences have to be identified and compensated
for by ab initio modelling or by optimisation methods. In
particular optimisation methods based on molecular
mechanics and dynamics protocols still represent a weak
point, although it is reasonable to assume that it should be
possible to improve most models by using a good force
field and simulation protocol. Finally, protein structures or
ligands are not rigid systems, they have a high degree of
flexibility, and docking or design methods that are able to
take both the flexibility and small structural errors into
account may give improved performance. Improvements in
these and other areas may finally turn homology-based
rational drug design into a really useful tool for the
pharmaceutical industry.
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ABBREVIATIONS

QSAR = Quantitative Structure-Activity Relationship

CoMSIA = Comparative Molecular Similarity Indices 
Analysis. 3D QSAR method using 
gaussian property distributions.

CoMFA = Comparative Molecular Field Analysis. 3D
QSAR method using calculations of 
interaction energies between the ligands 
and probe atoms placed on a regular grid.

PCA = Principal Component Analysis. Statistical 
data analysis method.

DPLSR = Discriminant Partial Least Squares 
Regression. Regression method where the 

dependent variables are indicator variables.

GRID = Method for analysis of protein binding 
sites by calculation of interaction energies 
between the protein and probe atoms placed
on a regular grid.

MCSS = Multiple Copies Simultaneous Search. 
Method for analysis of protein binding 
sites by calculation of interaction energies 
between the protein and probe molecules 
placed in the binding site.

PASSA = Protein Alpha Shape Similarity Analysis. 
Method for analysis of protein binding 
sites using a combination of gaussian 
property distributions and DPLSR.

ADMET = Absorption Distribution Metabolism 
Excretion Toxicity
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